Extensions 1→N→G→Q→1 with N=C22 and Q=C22xC22

Direct product G=NxQ with N=C22 and Q=C22xC22
dρLabelID
C24xC22352C2^4xC22352,195

Semidirect products G=N:Q with N=C22 and Q=C22xC22
extensionφ:Q→Aut NdρLabelID
C22:(C22xC22) = D4xC2xC22φ: C22xC22/C2xC22C2 ⊆ Aut C22176C2^2:(C2^2xC22)352,189

Non-split extensions G=N.Q with N=C22 and Q=C22xC22
extensionφ:Q→Aut NdρLabelID
C22.1(C22xC22) = C4oD4xC22φ: C22xC22/C2xC22C2 ⊆ Aut C22176C2^2.1(C2^2xC22)352,191
C22.2(C22xC22) = C11x2+ 1+4φ: C22xC22/C2xC22C2 ⊆ Aut C22884C2^2.2(C2^2xC22)352,192
C22.3(C22xC22) = C11x2- 1+4φ: C22xC22/C2xC22C2 ⊆ Aut C221764C2^2.3(C2^2xC22)352,193
C22.4(C22xC22) = C22:C4xC22central extension (φ=1)176C2^2.4(C2^2xC22)352,150
C22.5(C22xC22) = C4:C4xC22central extension (φ=1)352C2^2.5(C2^2xC22)352,151
C22.6(C22xC22) = C11xC42:C2central extension (φ=1)176C2^2.6(C2^2xC22)352,152
C22.7(C22xC22) = D4xC44central extension (φ=1)176C2^2.7(C2^2xC22)352,153
C22.8(C22xC22) = Q8xC44central extension (φ=1)352C2^2.8(C2^2xC22)352,154
C22.9(C22xC22) = Q8xC2xC22central extension (φ=1)352C2^2.9(C2^2xC22)352,190
C22.10(C22xC22) = C11xC22wrC2central stem extension (φ=1)88C2^2.10(C2^2xC22)352,155
C22.11(C22xC22) = C11xC4:D4central stem extension (φ=1)176C2^2.11(C2^2xC22)352,156
C22.12(C22xC22) = C11xC22:Q8central stem extension (φ=1)176C2^2.12(C2^2xC22)352,157
C22.13(C22xC22) = C11xC22.D4central stem extension (φ=1)176C2^2.13(C2^2xC22)352,158
C22.14(C22xC22) = C11xC4.4D4central stem extension (φ=1)176C2^2.14(C2^2xC22)352,159
C22.15(C22xC22) = C11xC42.C2central stem extension (φ=1)352C2^2.15(C2^2xC22)352,160
C22.16(C22xC22) = C11xC42:2C2central stem extension (φ=1)176C2^2.16(C2^2xC22)352,161
C22.17(C22xC22) = C11xC4:1D4central stem extension (φ=1)176C2^2.17(C2^2xC22)352,162
C22.18(C22xC22) = C11xC4:Q8central stem extension (φ=1)352C2^2.18(C2^2xC22)352,163

׿
x
:
Z
F
o
wr
Q
<